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Inviscid-viscous interaction in a high supersonic flow is studied on the triple-deck 
scales to delineate the wall-temperature influence on the flow structure in a region 
near a laminar separation. A critical wall-temperature range O(TC) is identified, in 
which the pressure-displacement relation governing the lower deck departs from 
that of the classical (Stewartson, Messiter, Neiland) formulation, and below which 
the pressure-displacement relation undergoes still greater changes along with drastic 
scale changes in the triple deck. The reduced lower-deck problem falls into three 
domains: (i) supercritical (TC 4 T,), (ii) transcritical (T, = O(T$))  and (iii) subcritical 
(T, 4 TC). Readily identified is a parameter domain overlapping with the Newtonian 
triple-deck theory of Brown, Stewartson & Williams (1975), even though the 
assumption of a specific-heat ratio approaching unity is not required here. 
Computational study of the compressive free-interaction solutions and solutions for 
a sharp-corner ramp are made for the three wall-temperature ranges. Finite- 
difference equations for primitive variables are solved by iterations, employing 
Newton linearization and a large-band matrix solver. Also treated in the program is 
the sharp-corner effect through the introduction of proper jump conditions. 
Comparison with existing numerical results in the supercritical T, range reveals a 
smaller separation bubble and a more pronounced corner behaviour in the present 
numerical solution. Unlike an earlier comparison with solutions by interactive- 
boundary-layer methods for ramp-induced pressure with separation, the IBL results 
do approach closely the triple-deck solution at  Re = lo8 in a Mach-three flow, and the 
differences a t  Re = lo6 may be attributed in part to the transcritical temperature 
effect. Examination of the numerical solutions indicates that separation and 
reattachment on a compressive ramp cannot be effectively eliminated/delayed by 
lowering the wall temperature, but lowering T, drastically reduces the triple-deck 
dimension, and hence the degree of upstream influence. 

1. Introduction 
Significant inviscid-viscous interaction on a global scale brought about by the 

displacement effect is a well-known feature of laminar boundary layers a t  high Mach 
numbers (Stewartson 1955; Hayes & Probstein 1959; Moore 1964; Bogdonoff & 
Hammitt 1956; Cheng et al. 1961). There is yet another more universal character of 
an interacting laminar boundary layer not restricted to high-speed flows, which 
manifests itself in a much shorter scale, permits upstream influence and separation, 
and has been the focus of a vast number of theoretical studies (see for example 
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Lighthill 1953 ; Stewartson 1974, 1981 ; Stewartson & Williams 1969, 1973 ; Messiter 
1979; Neiland 1969, 1971; Sychev 1974, 1987; Smith 1982, 1989). Central to these 
studies is the triple-deck theory which stipulates a three-tier structure made up of the 
lower, the main and the upper decks. This work is concerned with the triple-deck 
interaction problem in a boundary layer with a hypersonic outer flow. 

For the problem at  hand, one must distinguish cases in which the triple-deck 
interaction occurs in a flow field involving a strong global interaction from cases 
where the global interaction, if any, is weak. The strong and weak global interaction 
regimes correspond to both large and small values of a parameter x ZE q ( C / R e ) i ,  
where C is a quantity depending on the viscosity-temperature relation and a 
reference temperature (see Hayes & Probstein 1959). For a x of unit order or much 
larger, the triple-deck description is inapplicable, with the exception of a version 
under a Newtonian approximation which requires the specific-heat ratio to be close 
to unity, i.e. y+ 1 (Brown, Stewartson & Williams 1975). The present analysis 
addresses the triple-deck problem in the weak global interaction regime (x -+ l ) ,  with 
the effect of a strong wall cooling as the main focus. As i t  turns out, the range of TWIT, 
need not be too low for its effects to be manifested significantly in an application. 

Unique to the present study is a characteristic wall-temperature level T: 
determined principally by x, hence by the Mach and Reynolds numbers (to be 
precisely defined later). The analysis identifies three distinct wall-temperature 
ranges 

(i) Supercritical: T, 9 TZ, 

(ii) Transcritical: T, = O(T$), 

(iii) Subcritical : !l'Z 9 T,. 

The work of Lighthill (1953), Stewartson (1974, 1981), Stewartson & Williams (1969, 
1973), Messiter (1979), Neiland (1969, 1971), Sychev (1974, 1987), and Smith (1982, 
1989) may be considered as a special limit TWIT:+ co of the supercritical range. 

Significant departure from this limit occurs in the transcritical range where the 
pressure-displacement interaction law for the lower deck needs to be modified. 
Greater departure occurs in the subcritical range where strong wall cooling brings 
about a drastic alteration in the pressure-displacement relation and in the relative 
scales which, with the trivial exception of the upper-deck height, become independent 
of the Mach and Reynolds numbers, being principally determined by TWIT,. The 
entry of TWIT, into the scalings, particularly into the ' c '  of the basic theory, should 
prove to be helpful in application, since E will be rendered smaller for a lower wall 
temperature, and hence the asymptotic analysis more accurate. 

Although the basic premise in the triple-deck analysis of Brown et al. (1975) 
(y-  1 + 1) and in the present study (T,/q -+ 1) are quite different, their governing 
equations in reduced variables are virtually the same. Specializing to the parameter 
domain where both (y-  1) and T , / q  are small, a domain of applicability common to 
both analyses does exist. (For the restricted domain of small (y-  l ) ,  TWIT, and x, the 
present work could be regarded as a reformulation for Brown et al. ( 1 9 7 4  providing 
an improvement in approximation as well as in the rationale for the ordering used in 
the formulation/derivation.) 

The triple-deck structure is generally inapplicable in a regime where x is not 
(asymptotically) small, and the treatment with ( y -1 )  + 1 (Brown et al. 1975) 
appears to be the only viable approach for large x to date. The reduced problem of 
Brown et al. (1975) has been computationally studied for the supersonic boundary 
layer over a ramp by Rizzetta, Burggraf & Jenson (1978) and for the case of free 
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interaction by Gajjar & Smith (1983), where the Newtonian model of Brown et al. 
(1975) is simply referred to as that of a ‘hypersonic triple-deck’. One outstanding 
result accomplished in Brown et al. (1975) is perhaps its reconciliation with the 
eigensolution to the perturbation series from the Lees-Stewartson similarity solution 
(Stewartson 1955; Hayes & Probstein 1959; Moore 1964) for an infinite x, first 
uncovered by Neiland (1970), and more generally studied by Werle, Dwoyer & 
Hankey (1973) and by Brown & Stewartson (1975). 

The present work represents a development for small x, allowing also for small 
TWIT,. Contributions from several pressure corrections absent from the theory of 
Lighthill (1953), Stewartson (1974, 1981), Stewartson & Williams (1969, 1973), 
Messiter (1979), Neiland (1969, 1971), Sychev (1974, 1987), and Smith (1982, 1989) 
find themselves ranked with the leading approximation in the transcritical and 
subcritical wall-temperature ranges. The centrifugal-force effect controlling the 
pressure variation across the main deck belongs, however, to a higher order. At still 
lower wall temperatures, nevertheless, this effect could become of first-order 
importance and will be considered in a separate work. 

Since large differences in temperature level can exist between the lower and the 
main deck, a nonlinear viscosity-temperature relation (p cc P) is allowed and 
preferred over the linear one (p K T) adopted in most works. This should permit a 
physically more appropriate framework for matching correctly the lower and the 
main decks and for proper scalings and ordering in the approximations. 

In a relatively recent work on some features of the transcritical boundary layer 
interaction and separation, V. Ya. Neiland (1989, private communication) has noted 
and studied the wall-cooling effects, distinguishing also a transcritical wall- 
temperature range from other domains. The correspondence between these domains 
and the three temperature ranges of the present work is not very apparent. Unlike 
the following analysis, the equations in the main and upper decks therein are 
nonlinear with rather interesting transition behaviour. I n  passing, we note a rather 
comprehensive review by Kluwick (1987) on development in the triple-deck theory, 
where more recent works in supersonic cases are discussed. 

The questions of whether, and in what manner, a lowering of wall temperature 
may actually alter the physical scales and features of a triple-deck separa- 
tionlreattachment cannot be answered unambiguously without the support of 
concrete solutions from the computational study. Whereas the lower-deck governing 
equations in reduced variables obtained below can be identified with the 
corresponding Newtonian system in Brown et al. (1975) and in Rizzetta et al. (1978), 
existing results are far from answering/resolving the issues of interest. In  the present 
study, a finite-difference equation system in primitive variables was solved by a 
relaxation method, using spatial central differences, Newton linearization and a 
large-band matrix solver for each iteration. Solutions have been obtained for 
compressive free interactions and for sharp-corner ramps, with wall temperatures in 
the three different ranges. The program is implemented by a unique treatment of the 
sharp-corner effect in the form of jump conditions across the lower deck. Studies 
establishing mesh-size convergence and comparing the present work with existing 
numerical results based on the triple-deck analyses (Brown et al. 1975; Rizzetta et al. 
1978; Jenson 1977; Gajjar & Smith 1983; Williams 1975) and from the interactive 
boundary-layer (IBL) method (Werle & Vatsa 1974) are made. The comparison 
appears to suggest that some of the discrepancies between triple-deck and IBL 
solutions may be attributed to  the transcritical wall temperature and other effects 
unaccounted for in the standard work. From the following development, the effect 
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of the interaction on the surface heating rate will be seen to  be significant but can be 
separately treated. This work was presented in the Conference of Prediction and 
Exploitation of Separated Flow (Brown, Cheng & Lee 1989). 

2. Triple-deck analysis of a compressible boundary layer 
We consider the boundary layer in a steady, plane, compressible flow of a 

calorically perfect gas. The Mach number at its outer edge is assumed to be very high 
(M,  + 1 ) .  The conventional boundary-layer coordinates x and y ,  with corresponding 
velocity components u and v, are adopted. The variables x, y ,  u and v are non- 
dimensionalized by a global streamwise length L,  a typical boundary-layer thickness 
S, and the representative outer-edge tangential and normal velocities U,  and SU,/L, 
respectively. The two velocity components so normalized are denoted by ti and V. The 
non-dimensional density p is normalized by the representative outer-edge value p,, 
the pressure p by p1 e;, the temperature T by tlrf/C,, and the total enthalpy H by 
+ C q ,  where G, is the specific heat at constant pressure and c0 is a parameter to be 
chosen from the largest among M;,, 6/L and u* (a typical surface slope or ramp 
angle). The temperature T so normalized is recognized as the variable X in Brown 
et al. (1975), being slightly greater than the temperature ratio based on the stagnation 
temperature T, by a factor (1+(2/y-1)M;2). In  these variables, the equation of 
state gives 

(2.1) 
7-1 _ -  eifi = -pT. 
2Y 

Alt3hough the e0 gauging the global pressure difference will be taken later to  be 
l/Ml, restricting the application principally to the regime of a low x, this assumption 
is unnecessary until (2.59). Therefore, the substitution eo = 1/M, will not be made at  
this stage, so that subsequent extensions involving other types of external flows can 
be more readily carried out. Note that the results obtained are applicable also to a 
hypersonic wedge flow involving a very strong shock, as long as the subscript ' 1 ' is 
used to refer to the condition upstream of the triple deck behind the shock. 

A constant Prandtl number of the order unity is assumed; the viscosity- 
temperature relation is represented by a power law 

P K P  (2.2) 
for reasons noted earlier. The formulation also allows the option of a model 
fluid based on a linear viscosity-temperature relation with a reference viscosity 
,u* = p(T*) a t  a reference temperature T* (Cheng et al.  1961) 

which would result in a slightly different definition for the interaction parameter x 
(see below). The analysis will be presented for the exponent of (2.2) in the range 

i < w < l .  (2.4) 
A comment will be given later for the case w = t .  

2.1. The boundary layer o n  global scales 
We assume that a triple-deck structure can be embedded in an upstream global 
structure furnished by the boundary layer. It is convenient to work with the 
renormalized Dorodnitsyn variables 
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(2.5) 

(;;$ 6 
O-L 

A = -(€oMl)-l ~ 

where pi = p(T;) )  and Yo = G / ( l +  (2/y-- 1)M;2), and the stream function 

Y=AA,@, (2.8) 

with a$/ax = -p?i and a$/ay = pa. The governing equations of the boundary layer 
can be transformed into a nearly incompressible form, subject to errors of the order 
of (6/L)2,  

y - l -  

2Y 
Doc + vo7 + - T(ln p ) c  = p(RoJ7, (2.9) 

or+ 8 = 0, 

where subscripts 6 and 7 signify partial derivatives and 

(2.10) 
1 7  

(2.11) 

Note that p, H and T are variables non-dimensionalized 

(2.12) 

(2.13) 

by scales indicated a t  the 
beginning of this section. If the model-fluid option of (2.3) is to be used, (2.5)-(2.13) 
remain unchanged except for the replacement of C, of (2.7) by 

(2.14) 

Associated with (2.9)-(2.11) are the usual boundary conditions 

o=  o&), H = H&), ?#l-fCo, (2.15) 

o=0, P = 0 ,  H=T,=s,, 7+0. (2.16) 

Henceforth, we shall denote T, = T,(1 + (2 / y -  l)M;2)/G by s,. Note that, whereas 
Ue can be taken to be unity, He does not generally approach unity except in the limit 

Essential to the triple-deck analysis are the non-vanishing heat flux and shear stress 
at the wall in the original boundary-layer solution, which are controlled by both s, 
and w .  These quantities are the products of R with gradients of H and next to the 
wall. Let 

Ml+co. 

(2.17) 
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F l  (Upper deck) 

Boundary --- 

FIGURE 1. Illustration of a triple-deck structure of the interaction zone with relative scales 
shown in Dorodnitsyn variables. 

The boundary-layer equations (2.9)-(2.16) admit a solution behaviour near the wall 
for finite, non-vanishing h, and x, : 

T - (s; + w x ,  y)i, (2.18) 

U - x, Jo Pw dy , (2.19) 

subject to relative errors of orders p7 and s, 7,  respectively. It follows that the first 
and second partial derivatives may also be evaluated in terms of A,, hT and s, as 

(2.20) 

If one denotes the wall values of the gradients Hv and O7 by 

(2.22) 

A, can be related to h,, and A, to xu, by 
- 

A, = s&-5iT, A, = S;-wAu. (2.23) 

Note that A, and A, vanish with s, like sk-;". The results (2.18)-(2.23) are valid as 
long as 7 Q s;, and $ < w < 1. Subsequent analysis will establish that in the lower 
deck q is comparable with the parameter e which gauges the perturbation of 0 in the 
main deck, and that e Q 8;. Therefore these behaviours in the main deck can be 
assumed in the matching with the lower-deck solution later. 

We shall proceed to formulate the triple-deck problem, using the normalized 
Dorodnitsyn variable y as the transverse coordinate for the main deck, implying of 
course that the main deck has the same transverse scale as the global boundary layer. 
An illustration of the three-tier structure in question is sketched in figure 1 where 
several notations and definitions for various relative lengthscales and coordinates are 
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FIGURE 2. Illustration of a triple-deck structure with relative scales in boundary-layer coordinates. 
Note that the surface/ramp angle change is assumed to be small enough that the surface elevation 
measured from local Cartesian coordinates does not rise above the lower deck. 

also indicated. The physical extent of the upper deck may be taken to be of the order 
A / M ,  (cf. figure 2), which is not crucial in the present study and is of the order of S/e  
in the supercritical case. The (physical) thickness of the upper deck is in fact 
comparble with that of the main deck in the transcritical range, and this could cause 
problems in matching of upper- and main-deck solutions. However, this ambiguity 
does not arise in the following development which employs the Dorodnitsyn 
variable 7. 

2.2. The main deck 
Let the triple-deck structure be centred a t  k = ,5,. We shall introduce a new 
streamwise variable for the triple deck based on the shorter lengthscale A ,  

(2.24) 

Thus, apart from the variable 11, the main-deck structure is described by two 
streamwise variables : a global one, 6, describing the boundary-layer solution and the 
new variable e describing the steeper gradient provoked by the interaction. Let us 
assume an expansion for the tangential velocity 

(2.25) 

where e gauges principally the 0-perturbation, as noted earlier ; e p  and E ;  are small 
parameters gauging the displacement-pressure and centrifugal-pressure corrections, 
respectively, assumed to be of orders higher than e. The wall-temperature ratio sw, 
though small in most instances of interest, is not expanded out until a later stage 
when appropriate relations among sw, e and e p  will be assigned, depending on the 
parameter domain delineated. Similar forms are assumed for the total enthalpy H 
and temperature T.  The transverse velocity v corresponding to the 0 of (2.25) must 
take a form to satisfy the continuity equation (2.11) : 

0 = Uo(k, 7 ;  sw) +eUl(C, 7 ;  to, sw) + e p  up(C, k , ~ ;  to, sw) +ek Up,  +e2Uz + . . . , 

v = V,(,5, 7 ;  sw) + ( € / A )  K(C7 7 : ,509 s w )  + ( € / A )  vpce, k ,  11; t o ,  sw) + . . . I (2.26) 

where, to be sure, eVJA and e p  V p / A  are expected to be of an order lower than V,. The 
issue of uniformity does not arise in this instance since the higher-order remainder 
can be established, as in the standard triple-deck theory (see Stewartson 1974). The 
main-deck expansion for the pressure is 

(2.27) 
FLM 220 
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The subscript ' 1 ' on P could have been replaced by ' p '  to be consistent with the 
usage of U p ,  H,, etc. Unlike the ordering stipulated in the standard theory, e2 will not 
rank equally with ep, owing to the change in the relative sizes of certain terms 
brought about by a vanishing 5,. In  fact, the centrifugal effect will give rise to a 
correction with magnitude intermediate between e p  and e2, to be confirmed later. In 
this study, the outer (global) flow is taken to be uniform upstream ; it  follows that 
Po = (~V,e, )~/y .  The work presented below will be limited to domains where ek and 
e2 are of order higher than e p  ; the explicit criteria delimiting the domain studied will 
be given later. The T,(y) in (2.29), (2.31)-(2.35) below is the leading term in the 
expansion of the normalized temperature distribution T ,  not to be confused with the 
free-stream stagnation temperature !& 

Substituting the foregoing expansions into the Navier-Stokes equations yields a 
system of first-order partial differential equations (PDE) in c and 7 for Ul, V, and H ,  
or T,, which yields the main-deck result at the level of e :  

(2.28) 

(2.29) 

where the prime on Uo(7) ,  H,(q )  and T,(7) signifies a derivative, and the parametric 
dependence of the results on 5, and Eo is understood. Here, U,, H ,  and T, are the 
global boundary-layer solutions; from (2.28) and (2.29) one may infer that the 
function - A ( c ) ,  yet to be determined, is manifested as a local displacement effect 
to the main and the upper decks, but the non-slip wall conditions cannot be satisfied 
and a sublayer - the lower deck - is needed. These are familir results. Nevertheless, 
the simplistic form (2.29) for will be decisive in bringing about a far-reaching wall 
influence on the triple deck. 

As pointed out earlier, the ek is determined from the normal momentum equation 

(2.30) 
to be 

e; = +(Y- 1) y(eooMl)-2d-2eC,M~Re-1, 

with which EL = - q ( y )  T,(p)A"(g). (2.31) 

A t  the level of epr the corresponding PDE's provide a less simplistic solut,ion form : 

PI = P1(5/)> (2.32) 

a7 

vp = u 0 ~ r ~ { t ~ ~ - l ) ~ Y ~ 0 ~ - ~ P ; 0 1 - - D 1 7 - ~ + ~ 2 1 n r  

I 
U p  = G h ) ~ , ( f ' ) - t ( r - l ) ( Y P ~ ) - ' p , ( 5 ' ) r - o , 7 - 1 + D 2 1 n 7  ,. 

+ (To U i 2  -Dl 7-2 -D2 7-l) dr] - A ; ( g ) } ,  (2.33) 

+ (T,U~2-D1r-2-D27-1)dr] - ~ ( ~ - ~ ) ( Y P , ) - ~ P ~ T , U ~ ' ,  (2.34) J, J 



Inviscid-viscous interaction in hypersonic flow with strong wall cooling 317 

and P , ( c )  and A&) are functions to be determined. The results (2.28)-(2.35), as well 
as results for the levels and e2 not presented here, pertain to a perturbation 
solution of an inviscid, nearly parallel, rotational flow, their viscous corrections 
belong to the order A higher, as may be inferred from (2.9) and (2.10). As in the 
classical theory, A will be shown to be much smaller than E and ep .  The key to the 
lower-deck analysis is the behaviour of U and T' based on (2.28)-(2.35) in the inner 
limit 7 --f 0 : 

x [ w In e + w ln (:) + y]} 

( 2 . 3 7 ~ )  

Note that terms proportional to D1/q  in (2.33) and (2.34) have been cancelled by 
corresponding behaviour from the last term in (2.36), as 7 + 0. The foregoing results 
confirm the lower-deck thickness in 7 anticipated, i.e. 71 = O(e), the proper velocity 
and temperature scales assumed for the lower deck, as well as the need for the 
requirement E < sg. The matching of these with the corresponding quantities in the 
lower deck must obviously be carried out later in the range E 6 7 6 1. The question 
remains if, indeed, the requirements 

(2.37 b)  

can be satisfied. These inequalities are suggested by ep < e 6 1 in Stewartson's (1974) 
theory originally developed for s, =+ 0. They will be affirmatively answered later. 

11-2 
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2.3. The lower deck 
The basic solution Uo(7), etc. on which the perturbation analysis in the main deck 
was performed is for the global boundary layer. The slope and coordinate changes of 
the body surface admissible to the lower deck are so slight that the coordinates used 
in the main-deck analysis are virtually Cartesian (see figure 2). A difference from this 
local Cartesian (such as x and y) must, however, be taken into account in the analysis 
of the lower deck if boundary-layer coordinates (such as x’ and y‘) or their 
equivalent are to be used, especially if yw(x) is comparable to the lower-deck 
thickness of E .  The difference in question is y-  y’ = yw(x). Note that we have used the 
normalization for y and y‘ indicated a t  the beginning of $2. In  changing the 
Dorodnitsyn variable 7 for the main deck to the corresponding variable in the lower 
deck, we observe that for small 7 

(2.38) 

Therefore, with (2.1) and (2.6), we can define the reduced lower-deck variables for y‘ 
and yw according to 

(2.39) 

with which (2.38) furnishes the relation needed : 

(2.40) 7 - - y”+gw. 
E 

In the reduced variables 2 = r ,  y” = (7 -By”,)/€, and the reduced dependent variables 
for the lower deck inferred from (2.36) and (2.37a), 

(2.41) 

(2.42) 

the PDE’s governing the lower deck to the leading order for a, v“ and pl may be 
reduced to a canonical form, subject to errors of the order el$;, 

aa aa 
a2 ay 
-+, = 0, (2.43) 

(2.44) 

(2.45) 

after setting (2.46) 

(2.47) 
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where, to be sure, A,  = ~ k - ~ h ,  and A, = &;-;"A,. These furnish two relations among 
the three scale factors e, e p  and A .  Note that, with the exception of an unknown 
pressure gradient, (2.43)-(2.45) are the same as those for an incompressible boundary 
layer. The momentum and continuity equations are decoupled from (2.45) and the 
temperature profile and heat-transfer rate can be computed after solving (2.43) and 
(2.44). The arrival of the incompressible form, (2.43)-(2.45), should not be too 
surprising, since temperature and pressure, hence the density, are uniform in the 
lower deck to the leading approximation. 

The main-deck solutions in the inner limit, (2.36) and (2.37a), are more than 
sufficient for providing the outer boundary conditions for the PDE's (2.43)-(2.45) 
under a small €Is:. Namely, as d-  co 

Q-g - A+ij,,  c-a - A+ij,. (2.48) 

These, with (2.46) and (2.47), will assure the matching with the main-deck results 
in a common domain e < y 4 1 ,  or 1 4 y" 6 e-', subject to later confirmation of 
e p  4 s k 3  required by (2.37 b) .  

- 

The non-slip wall boundary conditions are 
- 

Q = c = T = O  a t  j j = O .  (2.49) 

Far up- and downstream, we require 

A+O as 5+--co, (2.50) 

A+-i j ,  as ~ + + c o .  (2.51) 

The last requirement follows from the stipulation that the velocity profile will finally 
merge with that in the downstream global boundary layer which is only slightly 
perturbed from the state a t  6 = to, and therefore Q - y". 

2.4. The pressure-displacement relation 
The function A ( f ' )  is seen from (2.48) to be indeed a main-deck displacement caused 
by the presence of the lower deck. One more relation linking A ( C )  to the self-induced 
pressure Pl([)  is required to close the lower-deck system (2.43)-(2.51), which may also 
furnish the additional condition for completely determining e ,  e p  and A in terms of 
sw, Re andM,. It is essential to observe that Pl(f') cannot be directly related to A'(f') ,  
as it was in the classical theory, since it is the displacement of the main deck's outer 
edge (not that of the lower deck) that determines the change in pressure Pl(f ' ) ,  and 
that the latter will be affected by certain higher-order terms which prove to be of 
first-order importance a t  low wall temperature. 

The Pl-A relation should follow from a thorough analysis of the upper deck and its 
matching with the main deck. The relation sought may also be obtained through the 
displacement thickness S* of the main deck ; this appears to be particularly simple for 
a hypersonic boundary layer which has a sharp outer edge, i.e. S x S* (Stewartson 
1955; Hayes & Probstein 1959; Moore 1964). Let us calculate 6* in the hypersonic 
limit 

or (2.52) 
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(2.53) 

and we have used p / p ,  = 1 and Po = ( l /y )  (M, so)2 in approximating $i in (2.52). In  
(2.52), the integration ranges from the wall up to the main-deck outer edge, which 
includes the lower deck. The contribution to the integral comes principally from the 
main-deck solutions ; the latter leads, however, to a non-integrable singularity in the 
lower limit, owing to the solution behaviour (2.37a). To resolve this ambiguity, we 
introduce an indefinite integral 

(2.54) 

so that the integral in question is the limit I(o0 ; 5)  and that aI/aq = T -  (T/U)e  D. 
In the main deck (0 < 7 < a), I can be evaluated as 

(2.55) 

with the integrand of the second integral computed from the main-deck solution, 
whereas in the lower deck I is evaluated with its integrand determined by the lower- 
deck analysis. The contribution of (T/O)eU to the integrand of (2.54) and (2.55) 
belongs to an order higher than that of T for a boundary-layer approximation with 
a hypersonic outer flow, and is negligible as MT2 in the present study (Stewartson 
1955; Moore 1964). 

With the omission of (T/U)e  Bfrom (2.55) and the main-deck solution T ,  the main- 
deck result of I in the inner limit ( q + O )  may be obtained as 

+ s, q + s$-;"h,(+$ + d q ) ,  

where FP signifies the finite parts of the integrals 

(2.56) 

f Note that if a linear viscosity-temperature model is used, q,, will be replaced by C of (2.14), 
and xo is identified with the interaction parameter x = w(C/Re)- i  (Hayes & Probstein 1959; Moore 
1964). 
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and T, is the leading-order expansion of T ,  not to be confused with the stagnation 
temperature. In  the above, we have introduced terms with the factor (1 + T ) - ~  in the 
integrand with corresponding terms added to I in order to render the resulting 
integrand integrable in both limits 0 and GO without altering the correct behaviour 
of Tp and I in the inner limit. In the lower-deck (0 < y" % e- l ) ,  in terms of the lower- 
deck variables, I can be coniputed as 

[1+~s;~;"h,e+ .. . I  dy" 

= s, ey" + e2s~7'"'', lo (q - y" - A  - y",) dy" + e2sk-"h,[~ij2 + (A - g,) y"] + . . . . 
( 2 . 5 7 ~ )  

Matching of the main-deck and lower-deck results for I(q ; r )  in the range (recall 

s < y Q 1  or l < y " < e - '  (2.57b) 
9 - 4 d + d w ) )  

establishes that 

(2.58) 

where . . . are the unmatched remainder of the two expansions dominated by 

ep  t(r - 1) PI h, sk-"[Dl( 1 + In 9 )  -D ,  ?(In 9 - l)] + . . . 
from the main-deck solution. This, taking into consideration the dependence of D, 
and D, on s,, (2.35b, c) ,  is seen to be a t  most of order ~ ~ s W , l n y ,  e P q  and E ~ s ~ - ~ ,  being 
much smaller than terms of order E S ,  and eP retained under the inequality (2.37b) 
and for the range of 7, (2.57 b ) ,  considered. Note that the products sk-;"D, and sk-;"D, 
in the integrand of (2.58) are of orders sg and s;'", respectively. It is also essential 
to point out that the second term inside the square brackets of (2.58) does not 
represent a higher-order correction to Tp comparable with S~.-~D, and S ~ - ~ D ~ ;  i t  
serves only to cancel the corresponding singularities in Tp in the limit 7+0.  In 
passing, we note that the terms of order ESW, In 7 in the remainder would be matched 
by corresponding terms from the lower-deck solution pertaining to the next order, 
which is not needed, however, in the approximation level considered. 

It is thus seen that the main-deck displacement thickness S* is unaffected by the 
lower deck up to the order ES,, so long as E ~ / E S ,  is bounded and e/sg is small ; the 
latter provision will be substantiated later. The result is valid for a small as well as 
a unit-order s,. In  the latter case, the second right-hand member of (2.58) becomes 
simply - E S ,  A .  

We can now apply (2.58) to (2.52) under the hypersonic outer-edge condition and 
for a small x. In this case we should take E~ = M;' and then use the Prandtl-Glauert 
formula allowed by the upper deck 

(p,-p,)/p, = r@(Mt - 1)-+ (L)-l d&*/dz, 
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Using ( 2 . 3 5 ~ )  for l k ,  we arrive a t  a Pl-A relation 

d 

d5 
Pl = -'T,(A+vP1), (2.60) 

where (2.61) 

(2.62) 

With (2.60) the lower-deck problem, (2.43)-(2.45) and (2.48)-(2.51), can be 
considered closed; they may be compared to the corresponding equations in the 
classical triple-deck theory. Equations (2.46) and (2.47) with (2.61) and (2.62) furnish 
four relations for the five parameters E ,  ep, A ,  v and CT. The single degree of freedom 
left can be used to make the final system and its successive development more well- 
ordered ; this will bring out clearly the existence of a characteristic wall-temperature 
level and the three distinct wall-temperature ranges. In  passing, we point out that 
for Pr = 1 and w = 1, the value of k can be explicitly evaluated as 

k = 0.663+ 1 . 7 2 2 ~ , - ( ~ -  1)(0.367-0.836~,+0.412~~).  

2.5. Three wall-temperature ranges 

Examination of relations (2.46), (2.47), (2.61) and (2.62) and the pressure-displace- 
ment law (2.60) indicates a characteristic wall-temperature level 

s; EE [(hu)5y-%4[+(Y- 1)]-2xo]& (2.64) 

and the existence of three distinct wall temperature ranges : ( i )  supercritical, s, $8;; 
(ii) transcritical, s, = O(s;); and (iii) subcritical, s, < s:. For xo 4 1 ,  a small s$ is 
implicit. These follow from observing from (2.46), (2.47), (2.61) and (2.62) that 

and that 
v4CT = ( S $ / S W ) 4 W + 2  

€ = k-'(hu)-2+(y- 1 )  s$v, 

E p  = k-2(Xu)-2$(y- 1)  S$+lY2,  

A = k-3(Xu)-5y[+(7 - i)]3~$'+2v3. 

For s, $ S: (supercritical), we shall set CT = 1 ; therefore 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

v = (s$/s,)"+: < 1 (2.69) 
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and smallness of E ,  E and A is assured. It also follows from (2.64) and (2.66) that E 

is gauged by (y-  1 ) ~ s ~  2x8. In this case, (2.60) becomes lPw-l  1 

(2.70) 

where v given by (2.69) obviously gauges the departure from the classical theory (cf. 
Stewartson 1974, 1981 ; Stewartson & Williams 1969, 1973; Messiter 1979; Neiland 
1969, 1971; Sychev 1974, 1987; and Smith 1982, 1989). For s, = O(s$), i.e. the 
transcritical range, we have u = 0(1), and the parameters in (2.66)-(2.68) remain 
small since s, is necessarily small; hence we can still set u = 1.  But the lower-deck 
problem with a unit-order u and u in (2.60) can no longer represent a small departure 
from the classical theory. Beyond this range with a much lower s,, the scales based 
on u = 1 are not the proper set, since u would become unbounded and the expansions 
are not well-ordered. For the subcritical range, s, + s$, we therefore set instead 
u = 1,  which assures E ,  e p  and A in (2.66), (2.67) and (2.68) to be small, and (2.65) 
gives 

u = (s:/Sw)4"+2 9 1,  (2.71) 

and the pressure-displacement law assumes a non-degenerate form 

d 
- (P, + A )  = - u-lpl. 
d5' 

(2.72) 

This yields a relation fundamentally different from the classical law P1 = -dA/dc; 
moreover, according to (2.66)-(2.68), the E and A gauging the relative scale of the 
triple deck, as well as the eP gauging the induced pressure, become independent of xo 
or Re and M I ,  being determined principally by the wall-temperature ratio s,. The 
system with u = 1 obviously overlaps that with u = 1 in the transcritical range. 

The requirements on the smallness of e p / s ,  and E / S ;  made earlier in (2.37b) are 
readily verified from (2.66) and (2.67). Two additional parametric assumptions 
corresponding to the neglect of the centrifugal force effect on the main-deck pressure 
( E ;  4 e P )  and of the nonlinear correction (2  4 e P )  also follow. From (2.66)-(2.28), one 
can establish that 

s2 

EP 
- = (Xu)-2+(y-- 1) $$-I. 

(2.73) 

(2.74) 

Therefore to neglect the pressure variation across the main deck, one needs a 
sufficiently high outer-edge Mach number and a not so low wall temperature, i.e. a 
sufficiently low T,/T,. According to (2.74), the nonlinear effects gauged by 2 can be 
neglected if the viscosity-temperature relation obeys w > 8, but must be taken into 
account fully if w = a for a cold wall. 

As noted earlier, the significant influence of the wall temperature is a consequence 
of a very special form of the perturbation-temperature profile (2.29), which affects 
the displacement thickness in direct proportion to s, (see (2.56), (2.58) or (2.59)). This 
enhances the relative importance of pressure changes on the main-deck displacement 
at low wall temperature and explains the presence of dPl/d& in (2.70) and (2.72). The 
reduced lower-deck equations with either (2.70) or (2.72) are identical to those of the 
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Newtonian theory (Brown et al. 1975) even though y is not taken to be near unity 
here and s, was not assumed to be low there. This coincidence should not be too 
surprising, if one realizes that the perturbation pressure therein was amplified by a 
large x, enhancing therefore its relative importance to the main-deck displacement 
without the need to reduce s,. The differences of the present analysis from Brown 
et al. (1975) could be viewed as consequences of trading the requirement of a small x 
with that of a small (y-  1) .  In  addition to relaxing the restriction on the specific-heat 
ratio, a critical analysis on the influence of the viscosity-temperature law on triple- 
deck structure a t  low s, has been made. Of theoretical interest here is of course the 
identification of a characteristic s, determined by xo and the three distinct domains 
that follow. One surmises that a characteristic value of y $. 1 with three distinct 
Newtonian domains that follow could also be identified in Brown et al. (1975) for the 
Newtonian model. 

An interesting analogy between a shallow liquid layer flowing down a slope and the 
Newtonian triple-deck problem (Brown et al. 1975) in the limit x -+ co has been noted 
by Gajjar & Smith (1983), corresponding to an infinite (T in (2.72), and hence 
PI + A  = 0. The compressive free-interaction problem was solved therein with 
PI = - A ,  which exhibits a power-law growth in 5' far downstream. For a large but 
finite (T, however, (2.72) indicates the admission of a plateau value a t  large c, which 
will be determined in the computational study in $3. 

3. Computational study : compressive free interaction and ramp-induced 
separation/interaction 

Existing numerical results for the lower-deck problem a t  lower Mach numbers, 
particularly those from Stewartson (1974, 1981), Stewartson & Williams (1969), 
Smith (1982, 1986), Brown et al. (1975), Rizzetta et al. (1978), Jenson (1977) and 
Gajjar & Smith (1983), can be compared with the present computational study, since 
they share the same reduced equation system, except for the need to identify the 
proper values for the parameter Y in (2.70) or (T in (2.72). The available data are far 
from adequate, however, in ascertaining and distinguishing the solution features 
related to the wall-cooling effect. As examples of laminar separation in hypersonic 
boundary layers, we shall discuss computational studies for two problems : (a )  
compressive free interaction, ( b )  ramp-induced interaction. The former may be 
regarded as caused by the presence of an incident shock or a ramp of sufficient, 
strength far downstream of the triple deck. Detail comparison with existing triple- 
deck results as well as data generated by the iterative boundary-layer method will 
be made, after a brief description of the key features in the computation algorithm 
and the method of its implementation. 

3.1. Numerical procedure 
We solve the discretized form of the lower-deck equation system, (2.43), (2.44), 
(2.48)-(2.51) with the pressure-displacement relation (2.70) or (2.72), using the 
primitive variables u, and p .  For convenience, the tildes over the lower-deck 
variables will henceforth be omitted and x will be written for f". Central differences 
are used throughout to retain second-order accuracy. For the compressive free- 
interaction problem, a second-order-accurate, implicit marching scheme employing 
a large-band matrix solver (LINPACK) is used. In  the reverse-flow region, the 
Flugge-Lotz and Reyhner (FLARE) model is adopted, following Stewartson (1974, 
1981) and Stewartson & Williams (1969). That is, the program will delete uau/ax 
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wherever u < 0. A mesh, uniform in the x-direction (Ax = 0.10) and increasing 
progressively in the y-direction from Ay = 0.02, was used. 

For the ramp problem, a relaxation procedure utilizing again a large-band direct 
solver for the entire domain is developed and the nonlinear, coupled equations are 
solved in an implicit manner. The nonlinear terms are linearized by Newton’s 
method. Denoting the iteration stage by n, un+’-un by Au, and the central x- 
difference quotient by S,, the implicit relaxation scheme treats u ~ , ,  for example, as 

uuz = untl u, 

= unu~+(uflSx+u~)Au+O(Au)*. 

A smoothly varying grid with total grid points comparable to  (30 x 15) for Grid 1, or 
(60 x 30) for Grid 2, is used. Convergence with residue reducing down to was 
achieved typically in seven iterations for Grid 1, and fifteen for Grid 2 on a UNIX 
3-260. The convergence with respect to  mesh size and the adequacy of the grid will 
be examined later. The FLARE model for the reverse-flow region has been used only 
in the free-interaction problem. 

The upstream and downstream conditions (2.50) and (2.51) are implemented with 
partial differential relations equivalent to the asymptotic expansions for large 1x1 
upstream (Lighthill 1953; Stewartson 1974, 1981 ; Stewartson & Williams 1969; 
Smith 1982) and downstream (Smith & Stewartson 1973) 

- au - - - ( u + , y 3 x ,  2y x+ co 
ax 3x (3.3) 

where k satisfies 1 + a u k  = 1.2879ukt. I n  the free-interaction problem, (3.3) will not 
be applied, and Lighthill’s (1953) type of linear solutions are used as initial 
conditions. 

3.2. Compressive free interaction 
Compressive free-interaction solutions to (2.43), (2.44), (2.48)-(2.51) with yw = 0 
have been generated in the u and u ranges corresponding to all three wall- 
temperature domains. The special case u = 1, v = 0, affords a detail comparison with 
the well-established result of Stewartson & Williams (1973). At separation, for 
example, the present program gives 1.0261 as compared to 1.0260 from Stewartson 
& Williams (1973). The plateau value of P reached by the present program in this 
case is 1.809, which is closed to the 1.80 inferred in Stewartson (1974, 1981) and 
Smith (1982) and from other sources. The value 1.809 is, in fact, not far from the 
value arrived at in Williams’ more definitive work (Williams 1975) which resolves the 
ambiguity of the FLARE model with more thorough treatment of the reversed-flow 
region. 

Figure 3 presents the pressure p as a function of x for u = 1 and u = 1, 2, 10, 50 
and CO. The case with u = u = 1,  typical of the transcritical wall-temperature range 
can be compared with corresponding results from the Newtonian theory (Brown et al. 
1975). At the point of zero wall shear (x = 0), the present data give P = 0.811, being 
close to the 0.810 given by Brown et al. (1975). The latter work did not reach a 
plateau pressure, which is P = 1.681 according to the present, work. For the case of 
u = 1,  u = 2, corresponding to u = 2 in Brown et al.’s (1975) notation, the present 
program gives P = 0.581 a t  separation, compared to  0.588 from Brown et al. (1975). 
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FIGURE 3. Comparison of over-pressures in a free interaction at different levels of wall temperature 
corresponding to u = 1 ,  2, 10, 50 and m. The over-pressures at 5 = 0 (separation point) are 0.811, 
1.088, 2.018, 3.234 and 4.712 for (T = 1 ,  2, 10, 50 and co, respectively. The plateau pressures are 
1.681, 2.340 and 4.960 for c = 1, 2 and 10, respectively. Note, the variable 5' (cf. (2.24)) is written 
for expediency as x. 

The plateau pressure is P = 1.564 in this case. Figure 3 indicates that  the value of 
v = 50 is still far from the limit G+ co. The solution in the limit u + co compares 
closely with that given earlier by Gajjar & Smith (1983). The corresponding wall- 
shear distribution and velocity profiles a t  successive x-stations in this case are 
documented in Brown et al. (1989). 

3.3. Ramp-induced interaction 

We considered next the generic problem of an inviscid-viscous interaction induced 
by a sharp-corner ramp 

y = 0 for x < 0, 

= a x  for x > 0, (3.4) 

where x and y are in lower-deck variables and the physical ramp angle a* is 
normalized as 

(3.5) 

In  this case a relaxation scheme is used in the solution method. A unique feature 
with the sharp-corner solution in boundary-layer-type coordinates is a discontinuity 
in the x-derivative of the lower-deck solution a t  x = 0 for all y. It can be shown that, 
at x = 0, the pressure gradient is continuous, but 

01 = a*/&(y - 1) L I - ~ N ; ~ E S ,  xo. 

where the symbols [ ] and ( ) signify the difference and the arithmetic mean of 
downstream and upstream values, respectively. These jump conditions, together 
with the continuity of ap/ax are used in the program, and prove to be helpful in 
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FIGURE 4. Over-pressure p and wall shear 7, in ramp-induced interactions computed from two sets 
of grids a t  a reduced ramp angle a = 2.5: (a )  a supercritical case (v = 0, u = i), ( b )  a transcritical 
case ( v  = u = l ) ,  (c) another transcritical case (u = 1.5, v = 1). The dots represent the results of 
coarse-grid calculations, (30 x 15) for (a)  and ( b ) ,  and (40 x 15) for (c). The continuous solid curves 
represent the results of fine-grid calculations, (60 x 30) for (a)  and ( b ) ,  and (80 x 30) for (c). Note 
that (a )  corresponds to the classical triple-deck theory. 
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FIGURE 5. ( a )  Ramp-induced wall shear and ( b )  pressure a t  supercritical and transcritical wall 
temperatures corresponding to (T = 1 and v = 0 and 1 at a reduced ramp angle a = 2.5. Kote that 
the filled and open circles denote the separation and reattachment points, respectively. 

capturing the solution behaviour next to the corner. Associated with these is a 
singularity in wall shear a t  the corner, noted by Stewartson (Stewartson 1974, 1981 ; 
Messiter 1979) 

k c, alsl-t, z --f k 0, (3.7) 
-- drw 
ax 

respectively, and Jenson's (1977) work establishes that 

C, = +O.78661rw(O)13 
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FIGURE 6: (a )  Ramp-induced wall shear and ( b )  pressure at  two transcritical wall temperatures 
corresponding to v = 1 and cr = 1 and 1.5 at  a reduced ramp angle a = 2.5. Note that the filled and 
open circles denote the separation and reattachment points, respectively. 

in the unseparated case ( + )  and in the separated case (-). This provides a critical 
test in the solution accuracy to be studied later. 

Before presenting the numerical results and their comparison with existing works, 
the sensitivity of results on mesh size, and hence the accuracy, will first be examined. 
For this purpose, two groups of pressure and wall-shear results are presented in figure 
4(a-c) for a: = 2.5. The results shown are for cr = 1, v = 0;  cr = v = 1 ;  and cr = 1.5, 
v = 1, corresponding to a supercritical and two transcritical wall-temperature ranges. 
Each dot in figure 4(a-c) represents the computed value from the coarser grid, and 
results from calculations using the finer grid are presented as continuous solid curves. 
Of interest is not only the good agreement of the coarse- and fine-mesh results, but 
the apparent capability of the coarse mesh to reproduce the solution behaviour about 
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FIGURE 7 .  (a) Ramp-induced wall shear and ( b )  pressure a t  subcritical wall temperatures 
corresponding to v = 1 and u = 1,  5 and 10 at  a reduced ramp angle a = 0.5. Note that the filled 
and open circles denote the separation and reattachment points. 

the corner singularity. Detail comparison of the wall-shear distributions with the 
analytic result (3.7), (3.8) does support this expectation. Similar results for c1 = 1 and 
2 are documented in Brown et al. (1989). 

In figures 5 (a )  and 5 ( b ) ,  we present the wall shear 7, and pressure P for the super- 
and transcritical s, range (thus setting (T = 1)  for reduced ramp angle c1 = 2.5.  
(Again, see Brown et al. 1989 for the cases of a = 1 and 2 not shown here.) In the 
figures results for two different values of v (0 and 1 )  signifying different degrees of 
the transcritical effect are shown. The filled and open circles in figure 5 (b )  denote P- 
values at separation and reattachment, respectively. Corresponding solutions 
more pertinent to the transcritical domains are presented in figures 6 ( a )  and 6 ( b )  for 
which we set v = 1 and compare results for u = 1 and u = 1.5 for a = 2.5.  Increases 
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FIGURE 8. Streamline pattern with separation bubble corresponding to figure 7 for v = 1 and 
u = 10. The contours are drawn in the reduced, lower-deck, boundary-layer coordinates. 

in separation-eddy size and plateau pressure in the normalized variables are apparent 
with the larger IT (IT = 1.5). To be sure, as s, - TWIT, reduces, corresponding to an 
increasing IT, the extent of the triple deck as well as the amplitude of the induced 
pressure is expected to diminish rather than becoming large. The manner in which 
s, controls the eddy behaviour and the upstream influence needs to be more 
explicitly expressed and will be examined more precisely shortly. 

The calculation has not been as successful for IT beyond 1.5 for the larger ramp 
angles (a = 2.5) ,  for which the convergence becomes problematic, owing largely to 
the inadequate treatment of the reverse-flow region, it is believed. Use of a FLARE- 

type remedy, or other differencing and iterative strategies, to enlarge the domain of 
analysis in IT and a remain to be studied. For smaller ramp angles, however, solutions 
for subcritical cases with IT as large as 5 for a = 1, and 10 for a = 0.5 can be obtained. 
In  figures 7 and 9, the wall shear and pressure are presented for a = 0.5 and 1. Figures 
8 and 10 show the streamline patterns for a = 0.5, IT = 10 and for a = 1, IT = 5 ,  
respectively. 

3.4. Comparison with corresponding triple-deck and IRA solutions at lower 
supersonic Mach numbers 

In  the reduced variables it is possible to compare the numerical solutions generated 
in the present study with corresponding solutions obtained in the earlier triple-deck 
studies (Rizzetta et al. 1978; Jenson 1977) as well as results by interactive boundary- 
layer (IBL) methods (Werle & Vatsa 1974). Figure 11 reproduces the triple-deck 
results from Rizzetta et al. (1978) and the corresponding solutions from figure 4 (a) 
for IT = 1 and v = 0 for the reduced ramp angle a = 2.5. In  view of the good 
agreement between the present solutions based on two sets of grid, only the coarse- 
mesh data from figure 4 ( a )  are shown (as dots). (See Brown et al. 1989 for smaller 
reduced ramp angle.) The present work predicts a noticeably smaller extent for the 
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FIGURE 9. (a)  Ramp-induced wall shear and ( b )  pressure at subcritical wall temperatures 
corresponding to v = 1 and r = 1 ,  1.5, 2, 3, 4 and 5 at a reduced ramp angle OL = 1. Kote that the 
filled and open circles denote the separation and reattachment points, respectively. 

interaction zone and for the size of the reverse-flow region, with a significantly 
different behaviour of wall shear around the corner (z = 0). 

I n  an earlier study by Werle & Vatsa (1974), an IBL method was developed and 
applied to the compressive ramp interaction problem a t  Re = lo4, lo6 and lo8 in a 
Mach-three flow. The physical ramp angle was so chosen at each Re to give the same 
reduced ramp angle a = 2.50 (for T,/T, = i, y = 1.40). Thus the IBL results, when 
suitably expressed in the lower-deck variables, can be compared directly with the 
data of figure 11 (for a = 2.5, CT = 1, v = 0 ) ,  assuming that the departure from the 
classical triple-deck theory is small. This comparison is made in figure 12 for the 
pressure when the solid curve based on the triple-deck solution of Rizzetta et al. 
(1978) and the dots from the present program are transferred directly from figure 11 
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FIGURE 10. Streamline pattern with separation bubble corresponding to figure 9 for v = 1 and 
u = 5 .  The contours are drawn in the reduced, lower-deck, boundary-layer coordinates. 

unchanged, while Werle-Vatsa’s three sets of IBL solutions (Werle & Vatsa 1974) are 
traced as dashed curves. The encouraging agreement of the present triple-deck result 
computed for v = 0 and u = 1 with the interactive boundary-layer solution at  
Re = lo8 should not be too surprising, since v is expected to be sufficiently small a t  
this Reynolds number, and the agreement attests to the fact that the triple-deck 
theory represents correctly the asymptotic limit Re --f 00 of the Navier-Stokes 
solution. Thus the discrepancy between results of Rizzetta et al. (1978) (the 
continuous solid curve) and the IBL solution a t  Re = lo8 should not be taken as an 
indication of the need to  consider Re values far exceeding lo8. Estimates of the 
magnitude of v at  Re of 108 and 106 in this case indicates that v = 0.37 a t  Re = 10s 
and 0.66 a t  Re = lo6. The change in the pressure P resulting from increasing v from 
zero to unity has been given in figure 5 ( b ) ,  from which one may infer the amount of 
reduction in P due to the non-vanishing v = 0.37 and v = 0.66. One may conclude 
from figure 5 ( b )  that the correction in P a t  Re = lo8 is quite small and the lowering 
of P due to v = 0.66 a t  Re = lo6 is noticeable, though small, and is in the right 
direction. The larger amount of reduction in the IBL solution a t  Re = lo6 from that 
a t  Re = lo8 seen in the graph may well be attributed to the weak global interaction 
unaccounted for in the triple-deck theory and other second-order effects owing to an 
M ,  not as high as required by the present theory. 

3.5. Effect of wall-temperature reduction 
As mentioned, the separation bubble size and plateau pressure (in lower-deck 
variables) appear to increase with v. However, the physical dimensions of the triple 
deck and the bubble, and the magnitude of the perturbation pressure, actually 
reduce with increasing u, i.e. with decreasing wall temperature, as one may 
anticipate. This follows most directly from the explicit dependence on s, in 
(2.66)-(2.68) for the transcritical and subcritical ranges (for which v = 1 ) .  
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FIGURE 11. Comparison of numerical solutions to the ramp-induced triple-deck problem obtained 
from an earlier study by Rizzetta et al. (1978) (solid curves) and from the present study (dots) at 
a sufficiently high wall temperature corresponding to the supercritical limit v + 0, at a reduced 
ramp angle a = 2.5: (a)  wall shear, (b)  wall pressure. 

Although the upstream influence diminishes with reducing s, or TWIT,, it is not 
immediately clear if reducing s, (at a fixed x and a*) can avoid separation; this issue 
calls for an examination of the solution's dependence on a and (r. Note that a, being 
a normalized ramp angle, decreases with decreasing s, like s?+' for a fixed xo and a*, 
according to  (2.66)-(2.68) and (3.5), and that (i increases with decreasing s, like 
s;(4w+2) in the transcritical and subcritical ranges. The numerical solutions obtained in 
figure 9 for the transcritical and subcritical ranges shows that separation occur8 for 
(r greater than a value between 2 and 3. Now, if the wall temperature is reduced so 
that 01 is decreased to one half of its original value in figure 9, then the corresponding 
(r will increase to four times its original value, that is, (r becomes 8 and 12 if the 
original IT values are 2 and 3, respectively. But according to the results for a = 0.5 
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X 

FIGURE 12. Comparison of the numerical results for the ramp-induced pressure obtained from the 
present analysis (dots) to the IBL solutions obtained earlier by Werle & Vatsa (1974) for M ,  = 3, 
TJT, = 0.5 and Re = lo4, lo6 and los a t  the reduced ramp angle a = 2.5 (dashed line). The triple- 
deck results obtained earlier by Rizzetta et d. (1978) are also reproduced (solid curves). 

(v = 1) presented in figure 7, the separation appears to occur for a CT between 5 and 
10, being rather close to r = 10, indicating that separation may very well occur a t  
r between 8 and 12 The foregoing examination of the available data in this 
particular case indicates that decreasing s, cannot effectively eliminate/delay 
separation, but its upstream influence will drastically reduce with reducing s,. Nor 
can one conclude that reducing the wall temperature can provoke separation in an 
effective manner. 

Next we may also point out that, according to (2.68) and (2.69), the streamwise 
lengthscale of the triple deck will reduce with decreasing s, like s$ (at a fixed x o )  in 
the supercritical range corresponding to  Stewartson's original theory, and will 
diminish with decreasing s, like s$'+~ in the transcritical and subcritical ranges (for 
which v = 1). Therefore, at a low wall temperature belonging to the latter ranges, the 
classical theory over redicts the extent of A ,  hence the extent of upstream influence, 
by a factor of ~ ; ; ~ ( ~ + 3 .  

P 

4. Concluding remarks 
We have presented an analysis of inviscid-viscous interaction on the triple-deck 

scales in a hypersonic boundary layer. Although the study focuses principally on the 
significant influence of a low wall temperature, the work includes the hypersonic 
version of the original triple-deck theory (Stewartson 1974) in the limit x + O  and 
v + O  and delineates the departure brought on by wall cooling. As an asymptotic 
theory, the work may be considered to be of interest for the identification of a 
characteristic wall-temperature level T:, or s:, and the three distinct wall- 
temperature ranges relative to s:, representing different degrees of departure from 
the classical triple-deck theory. 

The resulting formulation mathematically shares its reduced governing equations 
with those of Brown et al. (1975) based on a Newtonian strong shock approximation. 
The latter requires y + 1 for an unrestricted x, whereas y =l 1 but x + 1 in the present 
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approach. The underlying reason for the critical influence of wall temperature is 
attributed to a very special property of the perturbed temperature profile in the main 
deck, which makes the change in the main-deck displacement thickness in direct 
proportion to the wall-temperature ratio s,. Thus a t  a low sw, the pressure 
perturbation may rank equally as a leading contributor to the main-deck 
displacement, resulting in a significant departure from the original theory. Apart 
from relaxing the requirement y+ 1, the present formulation allows a nonlinear 
viscosity-temperature law, which should describe more appropriately the lower- 
deck behaviour and scaling a t  low wall temperature. Interestingly, the characteristic 
wall-temperature level s$ turns out to be not excessively low for the ranges of x and 
y of practical interest, making the trans- and subcritical domains and their effects 
more readily realizable. 

A more recent study by V. Ya. Neiland (1989, private communication) also 
addresses a transcritical wall temperature effect. However, its relation to the present 
analysis remains to be reconciled. As noted in the text, two higher-order effects 
associated with the normal pressure gradient and with the nonlinear corrections 
omitted here may yet rank as leading contributors at a still lower wall temperature. 

The numerical procedures developed have provided solutions for compressive free 
interaction and ramp-induced separation and reattachment. Within the ranges of CT 
or v considered, the solution accuracy proves to be sufficient to reveal details and 
features not too clearly brought out in earlier work for the lower supersonic range. 
Unlike conclusions from earlier studies, the interactive-boundary-layer solutions 
with separation and reattachment (Werle & Vatsa 1974) at Re = los are shown to 
closely approach the triple-deck solution from the present numerical study ; while the 
discrepancy a t  Re = lo6 is yet to be understood, a noticeable part of it may be 
attributed to the transcritical effect. Contrary to  common belief, examination of the 
available numerical results indicates that  separation cannot be preventedldelayed 
effectively by merely lowering the wall temperature, but the thickness and the length 
scale A of the lower deck, and hence the upstream influence, are drastically reduced. 
As indicated in the text, further improvement in the convergence characteristic of 
the relaxation procedure is necessary for the calculation a t  reduced ramp angles 
beyond 2.5. The wall-cooling effect on an unsteady triple-deck flow may be expected 
to be similarly critical, but its influence on hypersonic boundary-layer stability 
remains to be investigated. 

We would like to acknowledge the helpful discussions with 0. R. Burggraf, M. M. 
Hafez, R. E. Melnik, and F. T. Smith on several phases of our work. The study was 
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